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Abstract--The flow in and around three-dimensional deformable bubbles subjected to a non-linear planar 
free shear layer was simulated using a finite difference/front tracking scheme with the full Navier-Stokes 
equations including surface tension. This allowed detailed resolution of the flow around and inside the 
bubble. The bubble size and response time is comparable to the thickness and timescale of the free shear 
layer and we have investigated increased deformation by systematically lowering surface tension. The 
interaction between the bubble wake and the shear layer led to complex three-dimensional flows past and 
within the bubble surface. The resulting hydrodynamic forces and trajectories of the fully resolved bubble 
simulation could be qualitatively compared with those expected from quasi-steady classical predictions. 
In general, the quasi-steady drag began to underpredict the actual drag as deformation increased and the 
quasi-steady lift predicted values of opposite sign to that of the actual lift for very high deformation. © 
1997 Elsevier Science Ltd. 
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1. INTRODUCTION 

I . I .  Previous studies 

The convection and shape of deformable bubbles can be significantly affected by the local 
continuous phase turbulence. This is especially true if the temporal or spatial scale of the flow is 
of the order of that for the bubble. Such conditions can be described as having St or fl of order 
unity, where St is the ratio of bubble response time to turbulent eddy lifetime and fl is the ratio 
of bubble diameter to eddy size. Even for flows for which the global St or fl << 1, we may find several 
small regions of strong gradients which yield a local St or fl of order one (Oakley et al. 1995). 
Similarly, in a large eddy simulation of a bubbly flow, small bubbles may be of significant size and 
timescale with respect to the subgrid turbulence scales. 

Understanding the hydrodynamic forces which act upon bubbles is critical to predicting bubble 
concentration distributions and turbulent dispersion processes. Most bubbly flow computations 
rely on a point bubble approximation and therefore a prescribed equation of motion. Such an 
approximation assumes the bubble mass is represented at a single point such that the resolution 
of the flow around the bubble surface is not necessary. With respect to point mass equations of 
motion for particles, Maxey and Riley (1983) derived a momentum equation for a small rigid sphere 
in an unsteady, non-uniform flow but limited to Stokesian flow conditions, i.e. particle Reynolds 
numbers of order one. Auton et al. (1988) derived a momentum equation for a body of simple 
shape moving through an inviscid fluid in which there is an unsteady, non-uniform, and rotational 
velocity field. Comparison of Auton's and Maxey-Riley's equations shows that the Faxen0 Basset, 
and viscous effects have been neglected by Auton et al. (1988) and that the added mass term is 
slightly different due to Auton's inviscid flow assumption. In general, the equations derived from 
these two studies typify conventional point bubble equations of motion. Modifications of the force 
expressions used in such bubble dynamic equations to provide more fidelity have been the subject 
of much experimental and theoretical research (e.g. Kuo and Wallis 1988; Yang and Leal 1991; 
Jiang et al. 1993; Sangani and Didwania 1993; Lovalenti and Brady 1993). 
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In particular, the conventional bubble momentum equations which include Basset history and 
Faxen terms may become inadequate when St or/3 approaches unity for bubble Reynolds number 
(ReB) much greater than one (Taeibi-Rahni et al. 1996). Additional complications arise when there 
is significant bubble deformation present. For example, experiments by Kojima et al. (1975) and 
Chahine et al. (1993) have shown that large deformable bubbles subjected to eddy fluctuations 
develop fundamentally different wakes as opposed to non-deformable ones. To fully describe such 
conditions, simulations must resolve the detailed fluid-bubble interaction. 

Direct detailed description of the bubble internal and wake flow field have been presented by 
Chahine et al. (1993) and Chahine and Duraiswami (1992) for inviscid flows and Sangani and 
Didwania (1993) for non-deformable bubbles at large Reynolds numbers. However, simulations 
using the full three-dimensional Navier-Stokes equations while avoiding the point mass 
approximation are less common. Mei et al. (1991) used such a simulation for a solid particle in 
air and investigated the role of the Basset history effect. Unverdi and Tryggvason (1992a, 1992b) 
used such simulations but also included deformation to compute the collision of two bubbles using 
a front tracking technique. Ervin (1993) studied deformation of bubbles and drops in a linear shear 
using this technique and qualitatively verified the experimental results of Kariyasaki (1987), which 
suggests that deformable bubbles and droplets in linear shear flows can migrate in the opposite 
direction of solid particles, i.e. yield negative lift coefficients. 

1.2. Present stud)' 

The objective of this study was to investigate the flowfields in and around high ReR deformable 
bubbles in a non-linear free shear layer using direct numerical simulation to resolve all temporal 
and spatial scales. Herein, non-linear shear layer refers to one in which Kelvin Helmholtz 
instabilities allow eddy and braid formation (as opposed to a linear shear layer of uniform velocity 
gradient throughout). The movement of the bubbles was based on the integral pressure and viscous 
forces over the surface of the bubble as defined by the local unsteady flow field, i.e. the empiricism 
of quasi-steady drag and lift coefficients was removed. Such a time-accurate Navier Stokes 
formulation allows this study: (1) to directly observe the effect of the bubble interaction with eddies 
and braids for St and fl of order unity; (2) to compare the actual hydrodynamic forces between 
the surrounding liquid and deformable bubbles with their conventional point bubble counterparts; 
and (3) to qualitatively assess the predictive ability of conventional bubble dynamic equations for 
bubble trajectories. In these respects, this study is unique. 

2. NUMERICAL METHODS 

2.1. R B S  equations and numerical scheme 

We avoid the point mass approximation herein by using a single-fluid model to compute the flow 
fields both inside and outside the bubble such that only one set of Navier-Stokes equations are 
used, instead of one for each phase separately. We shall refer to such a simulation as RBS (resolved 
bubble simulation) since all fluid dynamic scales are fully resolved spatially and temporally in and 
around the bubble itself. The RBS of this study employs a finite difference method combined with 
a front tracking scheme based on Unverdi and Tryggvason (1992a). The front tracking scheme uses 
an unstructured adaptive gird on the bubble surface in order to account for the bubble deformation. 
As such, the density and viscosity fields are advected by an explicit tracking of the contact 
discontinuity. 

The numerical scheme used in this study computes the unsteady, incompressible, viscous, 
immiscible, multi-fluid, three-dimensional Navier-Stokes equations for the liquid and the gas. The 
evolution of both the free shear layer and the motion of the bubbles are governed by the same 
Navier-Stokes equation of momentum, which in conservative form, is 

D(pV) _ - V p  + pg + V.(2pD)+cr•nf(X - Xf), [1] 
Dt 
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where V is the velocity vector, p is the density,/~ is the viscosity, p is the hydrodynamic pressure, 
D is the rate of deformation tensor with components D~j = (V~j + ~.~)/2, tr is the surface tension 
coefficient, ~c is twice the mean curvature, g is the gravity force, and n is an inward normal to the 
bubble surface. Surface tension has been added as a delta function, 6(X - Xf), which is non-zero 
only on the bubble surface, where X = X f. This equation is complemented by the incompressibility 
condition 

v . v = 0  [2] 

which leads to an elliptic pressure equation when combined with the Navier-Stokes equations. 
The density and viscosity are allowed to vary, such that the above equations are therefore valid 

for the whole flow field (both the bubble and the ambient liquid flow fields). The resulting two 
continuity equations simply state that the density and viscosity of a fluid particle does not change 

0--7 + V.Vp=0,  + v . v u = 0 .  [3] 

In order to capture the discontinuity of the flow between the gas and the liquid, an indicator 
function, I(X) is constructed using the known position of the points on the bubble surface. This 
function is 0 for the outer liquid and 1 for the gas inside the bubble such that the density and 
viscosity fields can be written in terms of I(X) as follows 

p(X) = pL + (p. -- pL)I(X), /t(X) = /~L + (#. -- /~L)I(X), [4] 

where subscript B signifies bubble properties and subscript L signifies the liquid outside the bubble. 
The tracking of a bubble front within the computational domain is achieved by incorporating 

a (bubble) surface grid within a volumetric grid. Therefore, discretization of the field equations is 
carried out on two sets of embedded meshes: (a) the Eulerian fluid grid, which is three-dimensional, 
cubical, staggered, structured, and non-adaptive; and (b) the Lagrangian front grid, which is 
two-dimensional, triangular, unstructured, and adaptive. 

The Navier-Stokes equations are solved by a relatively standard finite difference projection 
method on the staggered three-dimensional Eulerian fluid grid. All spatial derivatives are evaluated 
by second order centered differences, and the time integration is performed by a second order 
predictor-corrector method. The pressure equation, which is non-separable since the density is not 
constant, is solved by a Black and Red SOR iteration technique. 

To advect the discontinuous density and viscosity fields, and to compute surface tension forces, 
we represent the bubble surface by the front grid computational elements. The two-dimensional 
front grid is advected by the fluid velocity which is interpolated from the three-dimensional fluid 
grid. To inject surface tension forces onto the fixed fluid grid we use a technique that is usually 
called the immersed boundary method and was introduced by Peskin (1977) for simulations of the 
motion of the heart. In this approach, the infinitely thin boundary is approximated by a smooth 
distribution function that is used to distribute the surface forces over the grid points close to the 
surface in such a way that the total forces are conserved. Therefore, the front is given a finite 
thickness of about three to four grid spacings and there is no numerical diffusion of this front since 
this thickness remains constant for all time. To generate the density and viscosity fields from the 
front we use a technique which is based on distributing the jump in these quantities onto the fixed 
grid by Peskin's scheme and then solving a Poisson equation for the field variable itself. This 
technique is presented in more detail by Unverdi and Tryggvason (1992a). 

2.2. Computation of hydrodynamic forces based on RBS results 
From the RBS flow field, we can solve for the instantaneous bubble hydrodynamic forces of drag 

and lift by applying a bubble momentum equation a posteriori to the predicted bubble and liquid 
flowfields. To do so requires calculation of several liquid flow characteristics at the bubble location. 
For large resolved bubbles, it is not possible to define one particular point in the liquid flow field 
which fully represents the local surrounding liquid properties (as is normally done in two-fluid 
models which assume a point bubble). Therefore, the local liquid quantities, such as liquid velocity 
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around the bubble, VL, are herein approximated by spatially integrating the computed vector field 
in a region close to the bubble (similar to Soo 1976). For the finite bubble Reynolds numbers of 
this study, e.g. 40, we assume the bubble is influenced in an approximately inviscid manner by the 
surrounding flow, i.e. with a 1/r ~ dependence. This dependence was coupled with a volume 
integration within the region of one to three diameters away from the bubble centroid (defined as 
VolE). The inner limit avoids the bubble boundary layer and excludes the virtual mass of the fluid 
which normally moves with the bubble. Thus, the averaged value of a liquid characteristic, say Q, 
for which the bubble was considered immersed, was taken as 

Q,,~ = ~ d( Vol)/ 7 d(Vol). [51 
"ol L d go/L 

As such, the instantaneous bubble velocity relative to the average flow velocity in the vicinity of 
the bubble, V,~, is taken to be VB - VL ..... where VB is based on the trajectory of the bubble 
volumetric centroid and VL .... is computed using [5]. This spatial integration was evaluated with 
rising bubble studies where the resulting relative velocities were accurate to within 2% 
(Taeibi-Rahni 1995). Changing the upper bound of the spatial integration from 3 to 4 diameters 
yielded differences of only 3% for both rising bubbles and shear layer bubbles. 

Once the above time varying flow field and history of the bubble characteristics were obtained, 
we applied the following methodology a posteriori on the RBS results to determine the drag and 
lift forces. Since these forces include effects of non-linear spatial and temporal flow gradients as 
well as deformation, we will refer to them as total lift and drag forces (D(o,, L~,,,). The bubble 
dynamic equation of Auton et al. (1988), is herein generalized to include these total forces as 
follows 

- D ,  
[61 

where 

d( ) 8( ) 
dt 8t 

+ v . v (  ) [7] 

and 

D( ) 8( ) d( ) ( V B -  VLave)'V(). [8] 
Dt - 8t +VL'"'~V( ) =  dt - 

Note ( )' here signifies forces before normalization by [2pL(Au)2VolR/(~&)] for which dB is the 
original bubble diameter and VolB is the bubble volume based on da. In the above equation, Cm 
is the added mass coefficient (=  1/2, Auton et al. 1988). Note, Cm can vary with acceleration 
number, which is the ratio of convective acceleration to local bubble acceleration (Odar and 
Hamilton 1964). However, using Odar's expression for the added mass coefficient yielded small 

Tab le  1. List o f  cases  wi th  b u b b l e  su r face  tens ions  

M o r t o n  B o n d  
Cases  Bubb le  p l a c e m e n t  a n u m b e r  n u m b e r  

A3 Qu iescen t  f low 40 4.5 x 10 H 0.033 
(r is ing bubb le )  
C3 N o n e  N o n e  - -  - -  
(single phase)  
G 3  Left  vor tex  core  40 4.5 x 10 -H 0.033 
( shear  layer)  
G 3 d  Left  vor tex  core  4 4.5 x l0  ~ 0.33 
(shear  layer)  
G 3 d d  Left  vor tex  core  1 2.9 x 10 6 1.3 
( shear  layer)  
G 3 d d d  Left  vor tex  core  0.5 2.3 x 10 ~ 2.6 
( shear  layer)  
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Figure 1. Computational domain with boundary and initial conditions, where there are periodic boundary 

conditions at x -y  and y-z  walls and full slip boundary conditions at x-= walls. 

differences (3%) as compared Auton's with respect to the computed drag and lift 
forces (Taeibi-Rahni 1995). Therefore, Auton's value of 1/2 was used for the results presented 
herein. 

In [6], the forces in the right hand side are buoyancy (B'), total drag and lift (D;o~ and L;o,), and 
the force resulting from the stress gradients of the liquid flow in the absence of a bubble (S'). All 
these forces equate to the bubble mass and the added mass times the bubble acceleration on the 
left-hand side (I'). As noted by Maxey and Riley (1983), the stress gradient term includes both 
pressure and viscous stress gradients acting on the bubble. Thus, the total lift and drag forces were 
computed by decomposing [6] into the drag and lift directions 

D(o, = I5 - B~ - $5 [9] 
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Figu re  3. ~: at  t = 10 for  cases G 3  (a  = 40), G 3 d  (a  = 4), G 3 d d  (a  = I), a n d  G 3 d d d  (a = 0.5). 

and 
L(o, = I~ - B~ - Si. [I01 

Several numerical sensitivity studies were completed to determine the components which contribute 
to the overall 25% uncertainty of  the forces and 10% uncertainty of  Vr¢~. Individual uncertainties 
included differences attributed to formulation of Cm ( ~  3%) for the spherical case, spatial and 
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temporal resolution of VL ('-~ 2%), spatial averaging errors ( ~  9%), and errors in relative velocity 
angle (,-~3%); for details see Yaeibi-Rahni (1995). 

For  later comparison with the above total lift and drag expressions we can also compute the 
conventional quasi-steady counterparts. The quasi-steady drag on a bubble can be written as 

D ~ s  = - ko C n Q s p c ( T r ~ i 8 ) l g r e ,  I g r e , ,  [11] 

-.9---g 

,',. 

~-"=--- | 

a~-  O~ 

F i g u r e  4.  ( :  a t  t = 15 f o r  c a s e s  G 3  (or = 40) ,  G 3 d  (~r = 4) ,  G 3 d d  ( a  = 1). a n d  G 3 d d d  (cr = 0.5) .  
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Figure 5, ft.. at t = 20 for cases G3 (a = 40), G3d (a = 4), G3dd (~ = 1), and G3ddd (a = 0.5). 

w h e r e  Coos is the  q u a s i - s t e a d y  d r a g  coef f ic ien t  fo r  a so l id  sphe re .  T h i s  v a l u e  was  t a k e n  f r o m  W h i t e  

(1991)  as  

24 6 
CDQS = ~ + + 0.4, 

1 + ~ R/~eB 
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Fig. 6. (a). (b) ( c a p t i o n  o v e r l e a f )  
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(c) 

Figure 6. Close-up of relative velocity vectors in ~the x~, plane with qr~ in the background at ReB ~ 11 
corresponding to t = 10 for (a) case G3d (a = 4), (b) case G3dd (a = 1), (c) case G3ddd (a = 0.5). 

where kD is the ratio o f  drag coefficient o f  a fluid body to that  o f  a solid body taken from Sherman 
(1990) as 4.03/6, and Vre~ is the relative velocity o f  the bubble with respect to the fluid (VB - VLav~). 
A different formulat ion o f  the quasi-steady drag (CDQs) which is proposed  for a bubble at finite 
Reynolds  numbers  in unsteady fluid based on Mei (1994) was also examined. 

For  the quasi-steady lift, the following inviscid formulat ion is used 

L~s = -CLQspt,(4rrd~/24)(V~e, X ~n) .... [121 

where CLQs is the quasi-steady lift coefficient ( =  1/2, Au ton  et al. 1988) and ~o is the vorticity of  
the liquid a round  the bubble. A second quasi-steady lift formulat ion using a viscous Sail'man (1956) 
formulat ion will also be considered for compar i son  with the total lift. Al though such a lift force 
is conventional ly used for only very low bubble Reynolds numbers,  it is considered herein since 
it was shown by Sridhar and Katz  (1993) that for small spherical bubbles with ReB of  order 10-', 
~o t~2 was a better scaling for lift than c9. Therefore, we will consider a second quasi-steady viscous 
lift as follows 

L;Q~ = CLvQspL V,o,(~/4)(WO)'~L [131 

Saffman derived a CL,. o f  6.46 for ReB < 1, while Sridhar and Katz  (1993) empirically found a value 
o f  12.8 for bubble Reynolds  numbers  o f  20-80. Since the latter is more  typical of  the present 
conditions,  we shall use CLvQS = 12.8. 

The differences between total drag and lift forces based on the RBS and based on the quasi-steady 
counterpar t  values arise due to the aspects o f  bubble deformat ion  as well as the strong unsteadiness 
and non-uni formi ty  of  the surrounding flow, e.g. the Basset history and the Faxen effects. We might  
expect the mos t  dramat ic  differences to occur at values o f  St and fi of  order unity (and Re~>> 1), 
as is the case herein. 
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2.3. Point bubble trajectories 

A separate set of  computations (beyond the RBS) were completed using a point bubble 
approximation to compute trajectories using the modified Auton et al. (1988) bubble dynamics 
equation introduced earlier [6]. However, instead of  solving for total drag and lift, the quasi-steady 
drag and lift forces described above (which can be readily calculated) were used in their place to 
solve for instantaneous bubble acceleration (and thus velocity and trajectory). 

The liquid properties (such as VL, VV,, and co) for the point bubble were spatially interpolated 
from the time-developing flow field of case C3 (single-phase) for each time increment. Thus we are 
assuming that the bubble induced motions do not significantly alter the shear layer. While local 
flow variations were observed, global turbulent statistics indicated that such an assumption was 
reasonable, e.g. time history of  the spatially averaged shear layer thickness and vertical Reynolds 
stress distribution for all bubbly shear layer simulations exhibited negligible differences, e.g. less 
than 2% (Taeibi-Rahni 1995). This is consistent for the low void fractions we are employing herein 
(~  1%) as per Loth and Cebrzynski (1995). Note, no spatial averaging of liquid properties (i.e. 
[5]) was necessary for these point bubble calculations. 

The objective of the point bubble trajectory study is to understand the differences between the 
way a point bubble and a large bubble (simulated with RBS) convect in a two-phase mixing layer. 
Recall, the point bubble is typically assumed to encounter flows which are of lower frequency than 
that of  the bubble itself and significantly larger length scale than of  the bubble diameter. 

2.4. Boundary and test conditions 

Computationally, there are two different approaches to studying the development of  a non-linear 
free shear layer between two parallel streams with different velocities: spatially evolving and 
temporally evolving. A temporally evolving shear layer does not contain the subtleties of 
asymmetric entrainment mechanisms, but the vorticity field is essentially invariant with regard to 
changes of  inertial frame. The approach herein is to use a temporally evolving shear layer as it 
saves an order of magnitude on computational requirements. The temporal free shear layer 
development employed periodic boundary conditions for the left and right boundaries and front 
and back boundaries, as well as full slip conditions for the top and bottom walls. A fundamental 
perturbation and a 90 ° out-of-phase sub-harmonic superimposed on a hyperbolic tangent mean 
profile was employed based on the results of Metcalfe et al. (1987) to yield the fastest vortex pairing. 
The dimensional initial velocity used in this study had the form 

u(x, y, 0) = Ul tanh(y/6,,~0) + 2Ul sech(y/&,o){ef cos[wdx + 0)] + es cos(wsx)}, [14] 

where u~ = 2, ef = 0 .2 ,  es = 0.14, wr = 0.4446, Ws = wf /2 ,  and 0 = 7z/2wr. All length scales were thus 
normalized by the initial vorticity thickness (6,,~o = ul/(du/dy)ma~), the velocity scales by m/2, and 
the time scales by the ratio of  these two values. In order to yield two full fundamental waves, a 
flow domain of  width 4rc/~of and height of 87r/3~of is used (see figure 1). Note the domain thickness 
was set at 3dB which was shown by Taeibi-Rahni (1995) to be sufficiently wide such that the 
influence of the image bubbles moving in parallel to each other was not strong. A shear layer 
Reynolds number (Re~0 = pLAu6o/pL) of 250 was chosen, where 60 is based on a 5-95%Au velocity 
profile thickness for which the velocity difference (Au) is defined as u~ - u2. At such a Re~0, the 
liquid flow is unsteady and non-linear but too viscous to begin a transition to turbulent flow. 

The kinematic viscosity ratio, Ve/VB, was set as 0.085, close to that of water to air. The density 
ratio was investigated to note its influence on bubble movement. The effect of  increasing the density 
ratio effect on the streamwise movement and velocity of case A3 (rising bubble) was found to be 
small. This is demonstrated in the plot of  streamwise movement as a function of time (figure 2) 
for pL/pB of  40 and 80 (where PL was fixed as 1 for both cases). Therefore, a p,/pB of 40 was used 
for the cases reported herein since higher ratios did not lead to significant changes in the flow but 
significantly increased computational time. 

For  the shear layer simulations, the bubbles were added near the left vortex core to the 
single-phase free shear layer flow at t = 5 after the initial shear layer conditions. By this time, two 
large eddies and a middle braid had developed due to Kelvin-Helmholtz instability. The internal 
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(a) 

(b) 

Fig~ 7. (a), (b) (caption overleaf) 
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(c) 

. . . . . . . . .  • • ..~. 
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Figure 7. Close-up of relative velocity vectors in the x - y  plane with qr~l in the background at ReB ~ 11 
corresponding to t = 15 fo r  (a)  case G3d (or = 4), (b)  case G3dd ( a  = 1), (c) case G3ddd ( a  = 0.5).  

bubble velocities were simply initialized to equal that of  the liquid velocities that were being 
replaced, i.e. they were unchanged. The initial bubble shape (which was always spherical) was then 
used to compute the indicator function and therefore the new density and viscosity distributions 
using [4]. In this study, the magnitude of  the gravity (g = 0.206), the velocity difference (Au = 4) 
and the initial shear layer thickness (6o = 3.8) were chosen such that centrifuge forces would be 
stronger than buoyancy forces based on the value o f  the eddy Froude number (Fr60 ~- Aua/4g6o = 5). 
Thus, the bubbles are expected to stay near the vortex core rather than move  uniformly in the - g  
direction. In addition, the bubble diameter (dB= 2.5) was chosen such that bubble response time 
was o f  the same order as the shear layer timescale (St ~ 0.6, based on terminal velocity o f  bubble 
in case A3), and bubble size was o f  the  same order as the shear layer thickness (/~ ~ 0.7, based 
on 60). Thus, the bubbles are expected to 'see' spatial and temporal gradients which can lead to 
significant departure from quasi-steady conditions, i.e. St and/3  o f  order unity. 

The Bond number (also called the Eotvos number) and the Morton numbel' have the main role 
in how a bubble is deformed in the absence o f  significant liquid flow gradients (Clift et al. 1978). 
The Bond number (B = pLg~/cr) is based on the interfacial surface tension (a) and is the ratio of  
internal hydrodynamic pressure force to the surface tension force. The Morton number 
(M - gy~/pLcr 3) is a property group which contains the additional influence o f  viscosity. The case 
designation and surface tension parameters are listed in table 1. These values o f  surface tension 
were chosen to give a wide range o f  bubble deformation: from nearly spherical to ellipsoidal to 
oblate. 

In order to find an appropriate mesh size (Ax), several resolution studies were performed with 
and without bubbles in the shear layer. Taeibi-Rahni et al. (1995) showed that a cell Reynolds 
number (Re,e, -= pLAuAx//~L) of  about 24 was needed for an accurate grid independent solution 
with a Re60 of  250. This was demonstrated by examining vorticity variance, since vorticity is a very 
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sensitive indicator of  grid resolution. The average variance between the vorticity fields from 
Recc~ = 24 to 19 was about 1% of the maximum vorticity. Therefore, a Re~eu of 24 was used along 
with an Eulerian fluid grid of  144 x 96 x 38 for all the single-phase and bubbly free shear layer 
simulations (cases C3, G3, G3d, G3dd, G3ddd). A typical shear layer simulation with a bubble 
required about  550,000 points, 30 CPU hours and 16MW on a Cray C90. A rising bubble 
simulation was also completed with a quiescent surrounding liquid (case A3) with a grid of 
144 x 38 x 38. 

(a) 

(b) 

Fig. 8. (a), (b)--(caption. /acing page ) 
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(c) 

Figure 8. Close-up of relative velocity vectors in the x-z plane with qre~ in the background at ReB ~ 11 
corresponding to t = 15 for: (a) case G3d (~ = 4), (b) case G3dd (~ = 1) (c) case G3ddd (a = 0.5). 

3, RESULTS AND DISCUSSION 

3.1. Liquid rorticity evolution 

Contours of spanwise Favre-average (density-weighted) vorticity (¢~--= pco=), which serve as 
markers of  the vortex structures and strength, were used in figures 3-5 for visualization of  the liquid 
flow field interacting with the large bubbles. The contour increments are all the same: 10% of the 
difference between maximum and minimum vorticity noted in the single-phase computation. All 
these figures are slices of  the flow field through the centroid of  the bubble in the x -y  plane (note, 
the bubble stays very close to the center of  the domain in the z-direction). Dark gray contours 
of the front are also superimposed on the vorticity contours to reveal the finite thickness associated 
with the variation of  density and viscosity normal to the bubble surface. 

Figure 3 shows the contours of  Cz for cases G3, G3d, G3dd, G3ddd at t = 10. At this time, two 
eddies have fully developed and the bubble is still trapped in the left eddy for all cases. Gravity 
has pulled the bubbles slightly to the right of the eddy core. The bubble deformation is consistent 
with convection of  the upper and lower parts of  the bubble in the clockwise direction to the 
surrounding eddy being somewhat elongated in the horizontal direction. The increasing deformity 
of  cases G3d, G3dd and G3ddd corresponds to the systematic reduction in surface tension. Note, 
case G3 yields sharper flow gradients at its surface as compared to the other cases which have a 
more relaxed deformation. This is due to the additional resistance of the bubble surface to the 
internal and external flows at high surface tension. 

At t = 15 (figure 4), the same effects are present, but are somewhat more pronounced. As the 
eddy core descends and moves to the left, the bubbles tend to follow, although less so for the more 
deformable cases. The pairing process has started and thus local eddy stretching is apparent 
(slightly less advanced locally for case G3). The deformation of  the bubble of  case G3dd is about 
the same as before, while that of  case G3ddd has increased considerably. This is perhaps due to 
the increased proximity to the vortex core for the G3dd bubble. 

Figure 5 shows the ¢= contours at t = 20 for cases G3, G3d, G3dd, and G3ddd. Between t = 15 
and 20, the bubble motion with respect to the eddy has changed significantly for the first three 
cases as they have 'overshot '  the eddy core; this is due to the greater acceleration exhibited on a 
buoyant particle as compared to a neutrally buoyant liquid particle in a liquid acceleration. The 
subsequent movement of the bubble to the left as it goes below the eddy core indicates convection 
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dominates the buoyancy force (which is to the right). The deformation direction is again consistent 
with that noted at t -- 15. Also as the surface tension has decreased, the wake of the bubble appears 
progressively reduced and in case G3ddd, the flow around the bubble is almost fully attached. 
However, velocity vector plots (in the next section) will show that significant three-dimensionality 
of  the wake has resulted in these cases. 

3.2. Velocity field in and around the bubble 

In order to further understand the large bubble behavior with respect to the flow inside and 
around these bubbles, a series of  planar slices of the three-dimensional flow field through the 
centroid of  the bubble are shown in figure 6-9 for cases G3d, G3dd, and G3ddd. The images show 
the two-dimensional relative velocity vectors ( V t , -  V~) superimposed on gray-scale contours 
corresponding to the three-dimensional relative velocity magnitude (qr~) for which darker areas 
indicate higher relative velocity magnitudes. It is important to note that the arrow size of the 
velocity vectors in each slice are scaled by the maximum vector within that slice. In general, the 
bubble and fluid velocity in the z-direction is small except in the immediate vicinity of the bubble. 
The figure set includes velocity vectors at t = 10 for the x~ ,  plane followed by t = 15 for x~ , ,  x z, 
y - z  planes. All the figures are a close-up near the bubble surface showing only a portion of the 
domain. The flow around the bubble of  case G3 (not shown) is similar to G3D except that it shows 
even less deformation (Taeibi-Rahni 1995). 

In general, bubbles shown in these figures are at bubble Reynolds numbers of about  20, in which 
the bubble wake (recirculation region) is relatively small as compared to that seen for the rising 

Fig. 9. (a) (caption on page 994) 
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Fig.  9. (b )~ (cap t ion  on page 994) 

bubble case (A3) at the same Reynolds number. Previous two-dimensional results (Taeibi-Rahni 
et al. 1996) have also showed the bubble wake to be significantly reduced by being embedded in 
a shear layer of similar length and time scale as the bubble. It was also noted that there is only 
a mild symmetric internal recirculation region in the rising bubble flow. Whereas, the free shear 
layer bubbles (at about the same bubble Reynolds number) can contain strong asymmetric internal 
recirculation regions as will be demonstrated in the following series of  figures. 

Figure 6 shows the vector plots for t -- 10 (5 time units after insertion) for cases G3d, G3dd, 
and G3ddd. The results indicate a strong recirculation region inside the bubble with one or more 
core centers, although the location of this point varies. For  example, in figure 6(a) this point is 
close to the lower side of  the bubble, since the bottom of the bubble touches the lower ambient 
liquid, which is moving to the left. The bubble of case G3dd (figure 6(b)) indicates at least two 
recirculation regions in the x - y  plane. On the other hand, the recirculation region has nearly lost 
all its coherency in case G3ddd (fig. 6(e)), which has a much higher deformation. The ambient liquid 
recirculation associated by the shear layer left eddy is located on the upper right hand side of  the 
bubble (2 o'clock from center) and to a lesser extent at the lower left hand side (8 o'clock from 
the center) and it appears to have been elongated as the surface tension decreased. In addition, 
it clearly influences the internal flow of  the bubble for the low surface tension cases, e.g. figure 6(c), 
for which there is greater movement of the local portions of  the bubble surface with respect to the 
bubble centroid. 

At t -- 15, figure 7 shows exaggerations of the above trends along with additional complications. 
These are due to the additional deformation as well as the fact that the bubble has dropped further 
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(c) 

Figure 9. Close-up of relative velocity vectors in the, y z plane with q,~, in the background at Reu ~ 11 
corresponding to t = 15 for: (a) case G3d (rr 4), (b) case G3dd (~ - lk (c) case G3ddd (or = 0.5). 

below the eddy core at later times thus introducing greater asymmetry  of  the surrounding liquid. 
The bubbles of  case G3d (figure 7(a)) and G3 are both nearly spherical and again show an internal 
recirculation center at the bo t tom of  the bubble. This is in part  due to their descent below the shear 
layer eddy core. In comparison,  the bubbles of  cases G3dd and G3ddd  (figure 7(b) and (c)) move 
slower and show greater interaction with the shear layer eddy core. This is a result of  the additional 
resistance of  the bubble with respect to the surrounding fluid due to the increased deformability, 
which yields increased bubble response times. This can be noted explicitly by the reduced bubble 
Reynolds  number  as cr reduces (Taeibi-Rahni 1995). In general, the bubble Reynolds numbers  
continue to increase: they have almost  doubled at t = 20 with respect to their counterpar ts  at 
t = l O .  

Figure 8 display slices o f  the flow in the x - plane through the y-centroid o f  the bubble, where 
x and z are horizontal  and vertical axes, respectively (see figure 1). This plane is essentially parallel 
to (and at this time within) the shear layer such that velocities vectors in both the + x  and - x  
direction are noted. Thus, the flow far above this plane is uniformly to the right ( + x  direction) 
and the flow far below it is uniformly to the left ( - x  direction). Recall that  the external free shear 
flow is in the x - y  plane and is initially set to be invariant in the z-direction. In addition, there was 
no disturbance added initially in the z-direction and coupled with the low shear layer Reynolds 
numbers  o f  this study, the spanwise variations for case C3 were negligible. As such, the presence 
of  the three-dimensional patterns seen in the following figures are due solely to the presence of  the 
bubble induced mot ion  in the z direction. Therefore, the leftward jet to the right o f  the bubble in 
figure 8(a) can be attr ibuted only to the presence o f  the bubble. 
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Figure 10. Evolution of different forces on the bubble of case A3 in drag direction using solid sphere drag 
coefficient and the Sherman (1990) correction for slip conditions at the bubble surface. Uncertainty of 

predicted forces is approximately 25%. 
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We are unaware of previous studies which have documented such a jet. The genesis of  this 
relative jet flow may be attributed to the three-dimensional wake of the bubble (to be explained 
further using y - z  plane figures) which tends to increase in strength as surface tension decreases. 
To understand the jet appearance we should consider that this point would yield a wake in the 
absolute (vs relative) velocity vector distribution. Once the relative velocity jet flow is generated 
in ,r-z plane, it spills around the bubble and causes recirculating regions on the top and bottom 
of  the bubble towards the left hand side. The jet flow is much stronger for case G3dd (a = 1) as 
shown in figure 8(b), where the recirculation regions have moved further above and below the 
bubble in this figure. Note, deformation is small in this plane but is significant in the x - y  plane 
(figure 7(b)). In case G3ddd (figure 7(c)), strong deformation can be noted and the relative velocity 
vectors show an additional rightward jet to the left of the bubble constructing two additional 
vortices on the right hand side of  the bubble. 

The flow fields near the bubble in the y - z  plane are shown for cases G3d, G3dd, and G3ddd 
in figure 9 for t = 15. The two trailing vortices of the three-dimensional bubble wake are apparent 
in the y - z  plane of figure 9(a) (case G3d). These two vortices are more coherent in planes which 
are downstream (to the right) of the bubble especially for case G3 (Taeibi-Rahni 1995), and yield 
a significant relative upwash at about one-half diameter downstream. This upwash is important as 
it causes the left ( - x )  running fluid stream below the bubble to be pushed upward and to hit the 
bubble. This is seen in figure 7(a) where we note the fluid moving toward the left on the lower 
right-hand side of the bubble---consistent with the jet of figure 8(a). Case G3dd (figure 9(b)) behaves 
similarly but it's upwash is more exaggerated. Case G3ddd (a = 0.5) exhibits a significant degree 
of deformation even in this plane, which combined with the three-dimensional wake appears to 
have resulted in four recirculation regions in the y - z  plane yielding a downwash and a stronger 
upwash (figure 9(c)). Some of  this upwash can be related to the aerodynamic shape exhibited in 
figure 7(c). 

3.3. Bubble hydrodynamic forces 

In order to study the bubble dynamics for the different cases, various forces acting on the bubble 
in the drag and lift directions were investigated during their temporal evolution. As discussed 
earlier, our bubble dynamics investigation was based on an a posteriori analysis of  the RBS studies. 
In other words, once the RBS results (flow fields and bubble trajectories) were obtained, [6] was 
used to compute the resulting time-evolving drag and lift forces on the bubbles which could then 
be compared to their quasi-steady values computed by [11], [12]. 
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In the rising bubble case (A3), the total drag grew monotonical ly  until the bubble reached its 
terminal velocity, at which point the drag approached a roughly constant  value equal to the 
buoyancy  force (figure 10). We note some oscillations are observed, which are consistent for the 
values o f  Mor ton  and Bond number  selected (table 1), which are known to yield a wobbly bubble 
rise (Clift et  al.  1978). The quasi-steady drag time history was also computed  (from [11]) and shown 
on this figure. As expected, it was quite similar to the total drag time history both qualitatively 
and quantitatively. Mei's (1994) quasi-steady drag coefficient was also investigated for comparison,  
however it significantly underpredicted (by about  20%) the total drag. 

The evolution of  forces in the drag direction for case G3 (~ = 40) is shown in figure 1 l(a). F rom 
this figure, buoyancy  and drag are the dominant  forces (al though we must keep in mind that the 
uncertainty of  these forces is roughly 25%). The bubble in this case typically moves in the gravity 
direction (opposing buoyancy)  and therefore the component  of  the buoyancy force in the drag 
direction is maximized. We note that the small V,.~ of  this case yields a small Dos about  which D~o, 
has strong oscillations, which corresponds to large adjunct drag forces (D~o,- Dos) similar to 
cylindrical bubble results (Taeibi-Rahni et  al.  1996). The evolution o f  forces in the lift direction 
for case G3 (o- = 40) is shown in figure 11 (b). F rom this figure, note that the total lift also fluctuates 
about  the quasi-steady lift yielding an adjunct lift force (L,,~ - Los) which is on the average roughly 
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Figure 1 I. Evolution of forces ['or case G3 in (a) the drag direction and (b) the lift direction. 
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Figure 12. Evolution of forces for case G3d in (a) the drag direction and (b) the lift direction. 

zero. The timescale of  these fluctuations ( ~ 2 )  roughly correspond to a bubble response time 
estimated from the average relative velocity (Taeibi-Rahni 1995). The results indicates that the 
quasi-steady lift coefficient of  0.5 (Auton et al. 1988) may be reasonable only in a time-averaged 
sense. In addition, note the significance of stress gradient at the later times as the bubble moves 
out of  the eddy core and the bubble relative velocity increases and is subjected to higher shear. 

The hydrodynamic forces were also calculated for the relaxed deformation cases G3d (figure 12), 
G3dd, and G3ddd. In general, the total drag is significantly greater than quasi-steady drag, e.g. 
figure 12(a). This underprediction of the quasi-steady drag force was even greater as surface tension 
decreased for cases G3dd and G3ddd (Taeibi-Rahni 1995). This is attributed to the higher drag 
coefficients for deformable bubbles (Soo 1989), which are not accounted for by the current 
(spherical) quasi-steady drag coefficient. In addition, there is a significant increase in the adjunct 
force oscillation time scale in the relaxed deformation bubbles (cases G3dd and G3ddd). This can 
also be attributed to the higher drag coefficients which yield larger bubble response times. 

The lift force is reasonably represented on a time-averaged basis for case G3d as was found for 
case G3. Again there are also significant adjunct lift forces, albeit at a longer timescale of  
fluctuation as compared to case G3. A similar result is seen for case G3dd but case G3ddd actually 
shows total lift forces which were in general opposite in sign as the quasi-steady lift forces. This 
is consistent with experiments by Kariyasaki (1987) and simulations by Ervin (1993). 
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The issue of proportionality of lift to vorticity [aB~o vs (vco) ~2] mentioned in section 2.2 is 
investigated using the bubble lift forces. The RBS total lift force for each case was converted to 
both an inviscid type lift coefficient (CL using [12]) and a viscous lift coefficient (CL~ using [13]). 
These were then compared to their two respective quasi-steady values (CLQs and CLvQS). Figure 13 
shows that both lift coefficients are reasonably represented on average by their quasi-steady values 
for cases G3 and G3d, and perhaps the CL values exhibit a somewhat better agreement than 
the CL~ values (where the Sridhar and Katz suggested value of CLvQS of 12.18 was used). 
Unfortunately, the small data set and the small variation in vorticity do not allow a general 
conclusion. Notably, as the surface tension decreases neither CLQS or CLvQS were reasonable 
approximations, e.g. case G3ddd yielded total lift coefficients of opposite sign to both quasi-steady 
counterparts. 

3.4. Resolved bubble vs point bubble trajectories 

Finally, in order to compare large bubble and point bubble convection, trajectories of point 
bubbles (for different quasi-steady approximations) were calculated using the method described in 
section 2.3. As such, [6] but with quasi-steady drag and lift forces was employed to calculate point 
bubble accelerations, velocities and trajectories. These could then be compared to the RBS 
trajectories which involved no 'modeling' of the drag and lift forces. This portion of the study was 
intended to evaluate the significance of lift and drag formulations on bubble advection for the 
present non-linear flow field, 

The trajectories and velocities of the large bubbles of cases G3, G3d, G3dd, and G3ddd in the 
x - y ,  y - z  and x - z  planes are discussed in Taeibi-Rahni (1995). From these results, the bubble 
motion in the z-direction is negligible except for some mild bubble wobble for the high deformation 
cases. Therefore, we will only show x-y  trajectories herein. Figure 14 gives point bubble trajectories 
using several different CD and CL formulations and the RBS trajectory for case G3, which would 
be expected to be best represented by the quasi-steady expressions since it has the least deformation, 
One point bubble formulation employs C~ equal to infinity, which simply corresponds to following 
the liquid velocity exactly. Comparison of the different trajectories leads to the following 
conclusions: (a) the combination of the Auton et al. (1988) lift coefficient and the drag coefficient 
adjusted as per Sherman (1990) provides the most reasonable point bubble trajectory; (b) when 
CL is small compared to Co (e.g. CL = 0, CL = CLMe, or CD equal to infinity), the point bubble curls 
upward and begins to convect to the right; and (c) the large (RBS) bubble trajectory is not well 
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coefficient of infinity: and various lift coefficients: Auton et al. (1988), Mei (1994b) lift coefficient, and 

a zero lift coefficient. 

predicted by any of the point bubble cases studied. The strong variations among the point bubble 
trajectories with different quasi-steady drag and lift expressions are in part caused by the non-linear 
flow field and the sensitivite initial placement of the bubble in the eddy core. 

4. CONCLUSIONS 

The present study investigated a few cases of large deformable bubbles embedded in a non-linear 
free shear layer. The test conditions were chosen such that bubble length and time scales were 
similar to that of the free shear layer, thus introducing the potential for strong interaction. 
Examining the three-dimensional velocity vector distributions, the bubbles were found to produce 
complex wakes due to interaction with the shear layer. This resulted in to novel jets and 
recirculation regions within and around the bubble, especially at low surface tension values. 

By solving the detailed flow around and inside the bubble, the RBS hydrodynamic forces and 
trajectories could also be compared with those expected from quasi-steady classical predictions. 
Computation of RBS forces on the bubble generally indicated that for the large bubble with 
negligible deformation (nearly spherical), on average the drag roughly follows the 2/3 correction 
for particles with slip surfaces and on average the lift roughly follows the potential flow results. 
However, significant temporal fluctuations about these corresponding quasi-steady values were 
seen for both lift and drag. As deformation increased, the quasi-steady drag began to underpredict 
the actual drag and the quasi-steady lift predicted values of opposite sign to that of the actual lift 
for very high deformation. As with the low deformation case, significant temporal excursions from 
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these quasi-steady values were noted (caused by the non-linear spatial and temporal gradients of 
the surrounding liquid). In general, the hydrodynamic forces on the low-deformation bubbles 
showed much higher frequencies of these excursions than the high deformation cases, which 
followed the liquid flow with much more resistance. 

Finally, bubble trajectories based on a point bubble approximation were much different than 
that based on the large bubble RBS calculation, presumably due to the above temporal fluctuations 
of the bubble total lift and drag forces. However, large differences were noted even among the 
different point bubble trajectories which were based on a variety of quasi-steady expressions for 
lift and drag for the point bubble dispersion; this is in part due to the non-linear flow field and 
the sensitivite initial placement of the bubble in the eddy core. 
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